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Abstract. We study the non-equilibrium time evolution of the classical XY spin model in two dimensions.
The two-time autocorrelation and linear response functions are considered for systems initially prepared
in a high temperature state and in a completely ordered state. After a quench into the critical phase,
we use Monte Carlo simulations to determine the time-evolution of these quantities, and we deduce the
temperature dependence of the slope of the parametric plot susceptibility/correlation in the asymptotic
regime. This slope is usually identified with the infinite fluctuation-dissipation ratio, which measures the
extent of violation of the equilibrium fluctuation-dissipation theorem. However, a direct measure of this
ratio leads to a vanishing value.

PACS. 75.40.Gb Dynamic properties – 05.70.Ln Non-equilibrium and irreversible thermodynamics

1 Introduction

Non-equilibrium properties of classical spin systems have
received a lot of interest these last years, especially in
the context of aging [1,2] and from the point of view of
the fluctuation-dissipation theorem (FDT), including its
extensions [3]. The main feature of non-equilibrium dy-
namics is the breakdown of time-translation invariance.
Together with space-symmetries, time-translation invari-
ance is the characteristic used to build a space-time con-
formal like theory for certain scale invariant systems [4].
This theory has given some predictions that have already
been tested on some systems, like the Ising model with
Glauber dynamics or the spherical model [5]. In the ag-
ing regime, a system relaxing towards its equilibrium state
shows a dependence in the two-time functions on both the
observation time t and the so called waiting time tw < t.
In this context, an extension of the fluctuation-dissipation
theorem (FDT) was proposed [6]. In equilibrium, the FDT
relates the correlation function to its conjugate linear re-
sponse function as such:

R(t − tw) = β
∂

∂tw
C(t − tw), (1)

where the time enters only through the difference t − tw.
Out of equilibrium, the generalisation takes the form

R(t, tw) = X(t, tw)β
∂

∂tw
C(t, tw), (2)

where the factor X(t, tw), the so called fluctuation-
dissipation ratio, measures extent of the violation of
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the FDT. It measures the ratio between the actual re-
sponse and the expected response if the FDT was valid.
Recently, a lot of interest was put in the asymptotic value
of the FDT ratio, defined as

X∞ = lim
tw→∞ lim

t→∞ X(t, tw). (3)

In particular, Godrèche and Luck [7] proposed that this
quantity should be universal for a critical quench. Evi-
dences to support this universality were obtained on ex-
actly solvable spin systems quenched from infinite temper-
ature They were obtained numerically on 2d and 3d Ising
model with Glauber dynamics [8], and also checked with
field-theoretic two-loop expansions of the O(n) model [9],
together with the 2d voter model [10]. This universality
was recently tested for a wide class of initial states in
the 1d Glauber Ising model [11].

As for more complex systems, the linear response func-
tion itself is not accessible by either numerical or exper-
imental analyses, and one is forced to look at integrated
response functions which measure susceptibilities as such:

χ(t, tw) =
∫ t

tw

dt′R(t, t′). (4)

Here the perturbation field is applied between time tw
and t, which is a zero-field-cooled (ZFC) scenario. To ex-
tract information on the FDT ratio from the susceptibility,
one usually plots the susceptibility versus the correlation
function, and from the asymptotic slope of the curve one
defines a number,

Xχ
∞ = − lim

C→0

dχ

dC
, (5)
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which is often identified with the FDT ratio X∞. The
idea behind this originates from analyses of infinite-range
glassy systems [12] where asymptotically, the fluctuation-
dissipation ratio depends on time only through the corre-
lation function. For those systems one has

X(t, tw) = X(C(t, tw)). (6)

In this context, the limiting ratio X∞ was interpreted as a
temperature ratio between the actual inverse temperature:
β, and the effective inverse temperature seen by the sys-
tem [14]: βeff = βX . From the dependence in equation (6),
one obtains the following expression for the susceptibility:

χ(t, tw) = β

∫ 1

C(t,tw)

dC′X(C′). (7)

This equation rigorously holds if the violation ratio is a
function of C(t, tw) only, and in this case, one can iden-
tify X∞ with Xχ

∞. In particular, this is the case at equi-
librium since X = 1 is a pure constant, which yields
χ = β(1 − C).

In a recent work [15], an exact expression was derived
for Glauber-like dynamics which enables one directly to
calculate the linear response function to an infinitesimal
field. The advantage of this approach is obvious since it
gives direct access to the linear response while non-linear
effects are avoided.

In this context, we have performed a Monte Carlo
study of the nonequilibrium evolution of the two-
dimensional classical XY system. We have studied the evo-
lution of the system after a quench from infinite tempera-
ture towards the low temperature critical phase, up to the
Kosterlitz-Thouless point. We have also considered the re-
laxation from a completely ordered initial state, for which
we have calculated two-point correlation functions, sus-
ceptibilities and response functions. From these data, we
have checked the violation of the FDT and compared our
numerics with theoretical predictions (spin wave approx-
imation), and previous numerical works when available.
The paper is organised as follows: in the next section, we
present the dynamics of the model and its solution for two-
time quantities in the spin wave approximation. Section 3
then deals with the numerical analyses for the ordered
initial state. We also turn to the infinite temperature ini-
tial condition. We summarise and discuss our results in
Section 4.

2 Two-dimensional dynamical XY model

The two-dimensional ferromagnetic XY model is defined
via the Hamiltonian

H = −
∑
〈ij〉

Si · Sj (8)

where the sum is over nearest neighbour pairs ij on a
square lattice, and where the classical spin variables Si are
two-dimensional vector fields of unit length. Introducing

angular variables, one can rewrite the original Hamilto-
nian in the form

H = −
∑
〈ij〉

cos(θi − θj). (9)

The equilibrium properties of this model are well-known
since the pionneering work of Berezinskii [16], Kosterlitz
and Thouless, and others [17]. At a temperature TKT ,
the system undergoes a continuous topological transition
due to the pairing of vortex and anti-vortex excitations.
Below the transition temperature, the system is charac-
terised by a line of critical points reflecting a quasi-long
range ordered phase with algebraic correlation functions.
The spin-spin correlation critical exponent η varies con-
tinuously with the temperature field. For the spin-spin
exponent η, the spin-wave approximation gives an accu-
rate analytic prediction at low temperature [16] while only
numerical estimates are known for the full temperature
regime [18].

The dynamics of the model was studied extensively
in the context of coarsening [19]. The two-time spin-spin
auto-correlation function, and the associated linear re-
sponse function, have been studied only recently in refer-
ence [20]. In the spin-wave approximation, which is valid
at low temperature(T � TKT � 0.89), the nonconserved
dynamics of the angular variable is given by the Langevin
equation [19]

∂

∂t
θ(x, t) = −δF (θ)

δθ
+ ζ(x, t), (10)

where ζ(x, t) is a Gaussian thermal noise with variance
〈ζ(x, t)ζ(x′, t′)〉 = 2Tδ(x−x′)δ(t− t′), and the free energy
functional is given by [19]

F (θ) =
ρ(T )

2

∫
d2x[∇θ]2. (11)

ρ(T ) is the spin-wave stiffness which is related to the η(T )
exponent through the relation 2πρ(T ) = T/η(T ).

Taking as initial conditions a completely ordered state
θ(x, 0) = θ0, and using the previously defined spin-
wave functional, it is possible to obtain analytical expres-
sions for the two-time auto-correlation and response func-
tions. At enough long times, the auto-correlation function
C(t, tw) = V −1

∫
d2x〈cos[θ(x, t) − θ(x, tw)]〉 [20] reads:

C(t, tw) =
1

(t − tw)η(T )/2

(
(1 + λ)2

4λ

)η(T )/4

, (12)

where tw is the waiting time, t is the total time and λ =
t/tw is the scaling ratio. This behaviour can be explained
in the following way: at short time differences t−tw � tw,
the fluctuations at small wavelengths (� ξ(tw)) have equi-
librated and we are in a quasi-equilibrium regime with a
correlation function decaying as C(t, tw) ∼ (t−tw)−η(T )/z ,
where the dynamical exponent z = 2 for the 2d XY model.
At longer times when the scaling function significantly dif-
fers from 1, the aging process takes place, giving rise to a
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full two-time dependence, leading to a breakdown of time-
translation invariance. The conjugate response function,
defined by R(t, tw) = V −1

∫
d2x δ〈S(x,t)〉

δh(x,tw)

∣∣∣
h=0

is

R(t, tw) =
2η(T )

T

C(t, tw)
t − tw

, (13)

with C(t, tw) given in equation (12). It is amazing to no-
tice at this point that the last equation has exactly the
same form as obtained from the Fluctuation-Dissipation
Theorem with a power law equilibrium correlation func-
tion C(t, tw) � A(t − tw)−η/z , where z is the dynamical
exponent. The difference from the equilibrium situation
lies in the fact that the nonequilibrium amplitude A also
depends on time. By differentiation, one also has a term
arising from the derivative of the amplitude A(tw), which
leads to a deviation from the FDT. From equation (12)
and (13), together with the definition of the fluctuation-
dissipation ratio given previously, it is straightforward to
obtain

X(t, tw) =
(

1 − (λ − 1)2

2(1 + λ)

)−1

. (14)

One can remark that for the special value λ = 2 +
√

5,
the fluctuation-dissipation ratio diverges since the par-
tial derivative of the correlation function with respect to
the waiting time vanishes at this value, reflecting the fact
that C(t, tw) is a nonmonotonic function with respect to
the time ratio.

For a quench from an infinite temperature state to
temperature T < TKT , no such analytical expressions are
available. However, on the basis of scaling arguments [19],
one can postulate the general expressions

C(t, tw) =
1

(t − tw)η(T )/2
fC

(
ξ(t)
ξ(tw)

)
, (15)

and

R(t, tw) =
1

(t − tw)1+η(T )/2
fR

(
ξ(t)
ξ(tw)

)
, (16)

where fC and fR are the scaling functions. The correlation
length ξ has a different behaviour if the quench is done
from infinite temperature rather than from a completely
ordered initial state, where one has [21]:

ξ(t) ∼
{

t1/2 Ti < TKT

(t/ ln t)1/2 Ti > TKT .
(17)

The logarithmic correction in the disordered initial state
case is due to the slowing down of the coarsening caused
by the presence of free vortices [21]. The approach toward
equilibrium proceeds through the annihilation of vortex-
antivortex pairs, which is a slower process than the equi-
libration of spin waves.

We shall first concentrate on checking these analytical
predictions numerically, while at the same time testing the
validity of our numerics. We then turn to the numerical
study of the infinite-temperature initial condition.

3 Numerics

3.1 Numerical approach

During the simulations, the system is initially prepared
in two different ways: the spin angles θi are either cho-
sen at random in the interval [0, 2π] corresponding to
the infinite temperature initial state, or by constant ini-
tial angles corresponding to the zero temperature ini-
tial state. For the numerical analysis, we use a standard
metropolis dynamics where a spin chosen at random is
turned at random with an acceptance probability given
by min[1, exp(−∆E/T )] where ∆E is the difference en-
ergy between the actual configuration and the former one.
As stated before, in order to go beyond the susceptibility
and to access directly the response itself, we use different
dynamics i.e. Glauber-like, where the transition probabil-
ities of a configuration with a spin Si to a new value S′

i is
given by

p(Si → S′
i) =

W (S′
i)

W (S′
i) + W (Si)

, (18)

with

W (Si) = exp


− 1

T
Si

∑
j

Sj


 . (19)

Both dynamics have the same dynamical exponents and
one expects no significant changes for thermodynamic
quantities.

The two-times autocorrelation function is defined by

C(t, tw) =
1
L2

∑
i

〈cos[θi(t) − θi(tw)]〉, (20)

where 〈.〉 is the average over the thermal histories. In the
metropolis simulation, we calculate the ZFC susceptibility
using [22]

χ(t, tw) =
1

L2h2

∑
i

〈hi · Si(t)〉, (21)

where h is a small bimodal random magnetic field applied
from tw. The overline means an average over the field real-
izations. For practical purposes, we use the value h = 0.04
in our simulations [23].

The response function itself is obtained numerically
with the help of Glauber-like dynamics [15]. By defini-
tion, the auto-response to an infinitesimal magnetic field
applied at tw is given by

R(t, tw) =
δSi(t)
δhi(tw)

. (22)

With the help of the master equation

P ({θ′}, t + 1) =
∑
{θ}

p({θ} → {θ′})P ({θ}, t) (23)

and following the lines of reference [15], it is straightfor-
ward to arrive at

R(t, tw) = β 〈cos θi(t) [cos θi(tw + 1) − cos θw
i (tw + 1)]〉

+ β 〈sin θi(t) [sin θi(tw + 1) − sin θw
i (tw + 1)]〉 ,
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Fig. 1. Rescaled autocorrelation function at T = 0.3 for a
system of linear size L = 512, and for different waiting times.
The solid line is a guide for the eyes corresponding to the value
η(0.3)/4 � 0.015.

where cos θw
i (t) and sin θw

i (t) are the components of the
Weiss magnetisation given by

Sx,y
i =

1
β

∂

∂hx,y
ln Zi

∣∣∣∣
h=0

. (24)

Zi = exp(−βH(θi, h)) + exp(−βH(θ′i, h)) is the local par-
tition function in the field. In fact, it is clear that we can
obtain the ZFC-susceptibility by simple numerical inte-
gration of the response function. However, here we have
used the standard metropolis algorithm (as in Ref. [20])
because it is slightly faster. We have checked that both
algorithms give the same results.

The thermodynamic quantities are calculated on
square samples with periodic boundary conditions of lin-
ear size up to L = 512, and averaged over 1000 thermal
histories typically.

3.2 Ordered initial state

In order to first check the compatibility of our numerics
with the analytical predictions in the spin-wave approxi-
mation, we start with a completely ordered state and set
the temperature T < TKT . In Figure 1, we present the
results obtained for the autocorrelation function in the
asymptotic regime t − tw 	 tw 	 1 at a temperature of
T = 0.3 where the expression (12) is expected to hold. For
different waiting times, the collapse of the data is fairly
good and the power-law behaviour in terms of the variable
(1+λ)2/(4λ) gives very good agreement with the XY η(T )
exponent, as shown in Figure 2.

In the asymptotic regime, the two-time response func-
tion is expected to be given, at least at low temperature,
by the spin-wave approximation formula (13). In Figure 3,
we give the numerical results obtained at a final temper-
ature of T = 0.3, for different waiting times. The aging
part of the response is very small in the accessible regime,
and the deviation from a time-invariant process is very
difficult to see, as the collapse of the data for different

0 0.2 0.4 0.6 0.8 1

T/TKT

0

0.1

0.2

0.3

η(
T

/T
K

T
)

Fig. 2. Dependence of the exponent η on temperature as
deduced from the two-time autocorrelation function (sym-
bols). The solid line corresponds to numerical values given in
reference [18].
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Fig. 3. Response function at T = 0.3 for different waiting
times.

waiting times in Figure 3 attests. Nevertheless, in Figure 4
we have plotted the numerical response function together
with the analytical prediction. The superposition of both
curves seems to validate the expected law. In reference [20]
this case was considered quite extensively, however it was
only done for one temperature. Here we have extended the
results to the whole low temperature regime.

3.3 Infinite temperature initial state

The infinite-temperature initial state is more canonical
in the study of coarsening and aging effects. After the
quench into the critical phase, the correlation length will
grow in time with a logarithmic correction due to the in-
teraction of walls with free vortices as mentioned in refer-
ence [21]. That is, ξ(t) ∼ (t/ ln t)1/2, leading to the con-
jectures (15,16) for the correlation and response functions
respectively. Berthier et al. have checked this conjecture
for the correlation length only for one final temperature,
namely T = 0.3. In Figure 5 we show the results obtained
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Fig. 4. Response function for different waiting times for a sys-
tem of linear size L = 512. The quench temperature is T = 0.3.
The solid lines correspond to the analytical expression (13).
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2

Fig. 5. Scaling plot of the two-time auto-correlation func-
tion for a quench from infinite temperature towards T < TKT .
The three different collapsed curves are obtained at T = 0.3,
T = 0.5 and T = 0.7 shown from top to bottom respectively.
The different waiting times for each temperature are tw = 100
(circles), tw = 300 (diamonds) and tw = 1000 (crosses). The
solid line corresponds to 1/x.

for several quench temperatures, ranging from T = 0.1
up to T = 0.7. The collapse of the rescaled correlation
functions (t − tw)η/2C(t, tw) as a function of the variable
ξ(t)/ξ(tw) is very satisfactory. From these curves, we can
extract the scaling function fC , see equation (15), and find
the power law behaviour fC(x) ∼ x−κ with a temperature
independent exponent κ = 1.05(10). In reference [20] the
value κ = 1.08 was found which is of course compatible
with our data. However, one has to be careful with this
statement since the exponent is very close to 1. For exam-
ple, if one takes the scaling variable to be x−1 = ξ(tw)/ξ(t)
instead of x = ξ(t)/ξ(tw), then the scaling limit we are in-
terested in is x−1 � 1. Then what is seen could very possi-
bly be the leading expansion terms of an analytical scaling
function, that is g(x−1) � g(0)+αx−1. Moreover, numeri-
cally the extrapolated value g(0) seems to be very close to
zero (less than 0.01), and it is impossible to test this value

0 0.5 1

T/TKT

0

0.5

X
χ 8

Fig. 6. Fluctuation-dissipation ratio versus reduced tempera-
ture T/TKT . The line is the conjectured function.

in the time range explored in this work. The same is true
for reference [20]. Therefore, if g(0) is non vanishing, at
long enough times the decay of the autocorrelation func-
tion eventually has the same power law dependence as in
the equilibrium situation. Otherwise, the decay is faster
and given by the power law t−η/2−1/2 up to logarithmic
corrections.

The parametric plot of the susceptibility times the
temperature versus the correlation function does not col-
lapse for different waiting times. This shows that the
fluctuation-dissipation ratio is not a function of C alone,
but rather has a dependence on both t and tw. How-
ever, after an initial quasi-equilibrium regime where
the different waiting time curves collapse and lead
to the equilibrium value X(t, tw) = 1, they finally
reach another constant slope, Xχ∞, independent of tw.
This number, Xχ∞, corresponds to the asymptotic limit
X∞ = limtw→∞ limt→∞ X(t, tw) only when X(t, tw) =
X(C(t, tw)). In Figure 6, where we plot Xχ

∞ versus the re-
duced temperature T/TKT , we clearly see linear behaviour
starting at Xχ

∞ = 0 for T = 0, up to the value Xχ
∞ = 1/2

at the Kosterlitz-Thouless point. It should be noted that
this continuous dependence of the FDT ratio on a model
parameter was also observed in the spherical model [24].

Finally, we present the data obtained for the linear
response function and the fluctuation-dissipation ratio
X(t, tw). The simulations are done on lattices of linear
size up to L = 100, and averaged over 11 000 realiza-
tions in order to obtain a good enough statistics for X .
In Figure 7 we show the results obtained for a final tem-
perature of T = 0.1. Very similar curves are obtained at
other temperatures. The collapse of the data for differ-
ent waiting times is very good, which confirms the scaling
conjecture (16). Eventhough the number of different his-
tories we have realized is quite large, the noise on the
points is still important. The range of time used is from
t = 100 to t = 2500, which explains the very short window
of the x-axis in Figure 7. Nevertheless, what is seen after
an initial short-time regime is a linear behaviour with the
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Fig. 7. Rescaled response function at T = 0.1 for a linear
system size L = 100 averaged over 11 000 realizations.
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Fig. 8. Fluctuation-dissipation ratio at T = 0.1 as a function
of the scaling variable t ln tw/tw ln t for tw = 10 (stars), tw = 30
(circles) and tw = 100 (diamonds).

scaling variable ξ(t)/ξ(tw), which leads asymptotically to

(t − tw)1+η/2R(t, tw) � AR

(
t ln tw
tw ln t

)1/2

, (25)

where the amplitude AR slowly varies with temperature.
In Figure 8, we present the fluctuation-dissipation ra-
tio X(t, tw) as a function of t ln tw/tw ln t obtained nu-
merically at the same temperature, T = 0.1, for waiting
times t = 10, 30, 100. Since in the calculation of X we have
to take a derivative, the obtained results are much noiser,
and it is difficult to go on to very long waiting times.
Nevertheless, we clearly see a good collapse onto a master
curve, leading to a vanishing fluctuation-dissipation ratio
in the asymptotic limit. The same features are obtained
at other temperatures. This is in contrast with what is ob-
tained from the parametric susceptibility/correlation plot.
We discuss this point in the next section.

4 Summary and outlook

We have carried out a numerical study of the non-
equilibrium relaxation properties of the two-dimensional
XY model initially prepared in two distinct states: com-
pletely ordered or fully disordered. For both initial states,
the two-time spin autocorrelation function and the asso-
ciated linear response function have been determined.

In the initial ordered case, we have fully confirmed
the analytical predictions obtained in the spin wave ap-
proximation, which is strictly valid at very low tempera-
ture. Nevertheless, the scaling form given in equation (12)
seems to be valid in a wide temperature range below the
Kosterlitz-Thouless transition. Using this, we have ex-
tracted the equilibrium exponent η(T ) with good accu-
racy as shown in Figure 2. Using Glauber-like dynamics
defined previously, we have directly obtained the linear
response function itself. This permits a direct comparison
of our data with the analytical expression (13). With this
approach, we have avoided difficulties inherent in the use
of susceptibilities which can be affected by short-time con-
tributions. Although the aging part of the response seems
to be very small, as attested in Figure 3, the plot in Fig-
ure 4 shows very good agreement between the numerical
data and the analytical prediction.

Starting with a fully disordered state, we have ex-
tended the conjecture in reference [20] at one particular
temperature to the whole low temperature regime. For
temperature ranging from T = 0.1 up to T = 0.9, we
have numerically confirmed the forms (15) and (16) of
the correlation and response functions with a scaling vari-
able given in (17). As discussed previously, numerically we
have found for the asymptotic behaviour of the autocor-
relation scaling function fC , defined in (16), a behaviour
which is compatible with a purely algebraic decay with a
temperature independent exponent very close to one. The
linear response scaling function, in the time-range stud-
ied here, has a linear behaviour with the scaling variable
ξ(t)/ξ(tw). Those asymptotic behaviours of the correlation
and response scaling functions are supporting, up to log-
arithmic factors, the forms given by local scale-invariance
theory [4]. Utilising the notations of [8], one has

C(t, tw) � t−a
w FC(t/tw), (26)

R(t, tw) � t−a−1
w FR(t/tw), (27)

where the scaling functions FC and FR have the asymp-
totic forms

FC,R(u) � AC,R u−λC,R/z u 	 1. (28)

From our data, we obtain a = η(T )/2 and λC = λR =
η(T ) + 1, confirming the general scenario depicted in ref-
erence [4,8,25]. Finally, we have extracted Xχ∞ from the
parametric susceptibility/correlation plot in the long-time
limit. The results we obtain fit well to the linear be-
haviour Xχ

∞ = (1/2)T/TKT . The direct use of the re-
sponse function gives a different answer, as seen in Fig-
ure 8. Although the fluctuation-dissipation ratio X(t, tw)
is a function of both t and tw, this dependence seems to
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enter only through the scaling ratio t ln tw/tw ln t. From
the numerical results we have obtained on the corre-
lation and response functions, it is clear that in the
asymptotic regime the fluctuation dissipation ratio X∞ =
limtw→∞ limt→∞ X(t, tw) vanishes. This result is different
from what is obtained from the parametric susceptibil-
ity/correlation plot. This vanishing tendency is due to the
breakdown of scaling induced by the presence of the log-
arithmic factors in the scaling functions. In practice, one
has to take care when discussing these plots, especially
when no master curve is ever reached for different waiting
times.

We wish to thank C. Chatelain and M. Henkel for the support
they have offered us. The other members of the Groupe de
Physique Statistique are also greatfully acknowledged.
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